Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells.
نویسندگان
چکیده
Spermatogonial stem cells (SSCs) self-renew and produce large numbers of committed progenitors that are destined to differentiate into spermatozoa throughout life. However, the growth factors essential for self-renewal of SSCs remain unclear. In this study, a serum-free culture system and a transplantation assay for SSCs were used to identify exogenous soluble factors that promote proliferation of SSCs. Mouse pup testis cells were enriched for SSCs by selection with an anti-Thy-1 antibody and cultured on STO (SIM mouse embryo-derived thioguanine and ouabain resistant) feeders in a serum-free defined medium. In the presence of glial cell line-derived neurotrophic factor (GDNF), SSCs from DBA/2J strain mice formed densely packed clumps of cells and continuously proliferated. However, other strains of mice required the addition of soluble GDNF-family receptor alpha-1 and basic fibroblast growth factor to support replication. The functional transplantation assay proved that the clump-forming cells are indeed SSCs. Thus, GDNF-induced cell signaling plays a central role in SSC self-renewal. The number of SSCs in culture doubled every 5.6 days, and the clump-forming cells strongly expressed Oct-4. Under these conditions, SSCs proliferated over 6 months, reconstituted long-term spermatogenesis after transplantation into recipient testes, and restored fertility to infertile recipients. The identification of exogenous factors that allow continuous proliferation of SSCs in vitro establishes the foundation to study the basic biology of SSCs and makes possible germ-line modification by sophisticated technologies. Moreover, the ability to recover, culture indefinitely, and transplant SSCs will make the germ-line of individual males available for periods extending beyond a normal lifetime.
منابع مشابه
Assessment of Culture Condition and In Vitro Colonization Ability of Human Spermatogonial Stem Cells: A Review Article
Spermatogenesis is a highly complex and regulated process in which germ stem cells differentiate into spermatozoa. These stem cells, called spermatogonial stem cells (SSCs), are in the base of seminiferous tubules and have the ability of self-renewal and differentiation into functional germ cells. Due to this ability, SSCs can restore spermatogenesis after testicular damage caused by cytotoxic ...
متن کاملComparison of Neonatal and Adult Mice-derived Sertoli Cells in Support of Expansion of Mouse Spermatogonial Stem Cells In vitro
متن کامل
Improvement of Expression of α6 and β1 Integrins by the Co-culture of Adult Mouse Spermatogonial Stem Cells with SIM Mouse Embryonic Fibroblast Cells (STO) and Growth Factors
متن کامل
Expression of Spermatogonial and Pluripotency Markers in Spermatogonial Stem Cells after Treatment with Different Culture Factors
Background: As condition and component of culture determine fate map of spermatogonial stem cells (SSCs), the aim of this study was to evaluate of growth factors GDNF, LIF and RA on proliferation and differentiation of SSC. Materials and Methods: SSCs were cultured in two groups: The first group GDNF and LIF and the second group RA. The number of clumps and colony formation was monitored dur...
متن کاملSpermatogonial Stem Cells: Biology, Isolation, Culture, Characterization, and Practical Perspectives
Spermatogonial stem cells (SSCs) also known as germ stem cells (GSCs) are the basis of spermatogenesis process in the testis. Furthermore, they are also valuable cells with different applications in developmental biology, transgenesis technology, and clinic. Understanding the new findings related to the cell and molecular biology of SSCs and the methods for isolation and maintenance of these ce...
متن کاملنقش سلولهای سرتولی در تعیین سرنوشت سلولهای بنیادی اسپرماتوگونی
Background: Spermatogenesis is a complex and highly organized process of proliferation and differentiation of spermatogonial stem cells. Spermatogonial stem cells (SSCs) as a unique stem cell have the potential to self-renewal, differentiation and transmit genetic information to the next generation and play a vital role in maintaining fertility. Sertoli cells as the only somatic cells within th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 47 شماره
صفحات -
تاریخ انتشار 2004